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ABSTRACT: Accurate prediction of rare high-impact events represents a major challenge for weather and climate
forecasting. Assessment of the skill at forecasting such events is problematic because of the rarity of such events. Skill
scores traditionally used to verify deterministic forecasts of rare binary events, such as the equitable threat score (ETS),
have the disadvantage that they tend to zero for vanishingly rare events. This creates the misleading impression that rare
events cannot be skilfully forecast no matter which forecasting system is used.

This study presents a simple model for rare binary-event forecasts and uses it to demonstrate the trivial non-informative
limit behaviour of several often-used scores such as ETS. The extreme dependency score (EDS) is proposed as a more
informative alternative for the assessment of skill in deterministic forecasts of rare events. The EDS has the advantage that
it can converge to different values for different forecasting systems and furthermore it does not explicitly depend upon the
bias of the forecasting system.

The concepts and scores are demonstrated using an example of 6-hourly precipitation total Met Office forecasts for
Eskdalemuir in Scotland over the period 1998–2003. Copyright  2008 Royal Meteorological Society;  Crown Copyright
2008. Reproduced with the permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd
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1. Introduction

One of the important roles of weather forecasting is to
help forewarn society about rare extreme events such as
tornadoes that can lead to severe losses. However, to be
able to do this it is necessary that the forecasting systems
have skill at forecasting such rare events.

Estimating the skill for such events is problematic for
several reasons such as the trivial non-informative limit
of many scores for rarer events, and the large amount
of sampling uncertainty on scores estimated on past rare
events. This article will address the first of these issues in
the simplest context of deterministic forecasts of binary
events.

There has been a long history of development (and
reinvention!) of scores for deterministic forecasts of
binary events (Mason, 2003). In an intelligent critique
of Finley’s use of proportion correct (PC) for the fore-
casting of rare events (US tornadoes), Gilbert (1884)
suggested two new scores which he referred to as ratio
of verification and ratio of success in forecasting. The
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ratio of verification is the ratio of the number of hits
‘a’ to the number of events that are not correct rejec-
tions (a + b + c) and is now known as the threat score
(Palmer and Allen, 1949) or the critical success index
(Donaldson et al., 1975; Mason, 1989; Schaefer, 1990).
Refer to Table I for mathematical definitions of this and
some other commonly used scores. By comparing the
threat score to what one would obtain for random fore-
casts, it is possible to construct a skill score that is now
known as the equitable threat score (ETS) (Doswell et al.,
1990; Gandin and Murphy, 1992). This skill score is the
ratio of success first proposed by Gilbert (1884). Both the
threat score and the ETS are widely used operationally
to assess the performance at forecasting events over a
range of thresholds. Other skill scores for rare-event fore-
casts such as the Peirce skill score (PSS) and the Heidke
skill score (HSS) are reviewed and compared in various
articles (Doswell et al., 1990; Schaefer, 1990; Marzban,
1998; Mason, 2003).

The limit of these and other deterministic scores for
increasing rarity is not easy to understand. Göber et al.
(2004) noted that while the PSS vanished for rarer rainfall
events, the odds ratio (OR) increased. They argued
that the OR, a measure of association, was perhaps a
more reliable measure of skill for extreme events. This
study goes one step further and shows that an even
better approach is to use a measure of association for
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Figure 1. Time series of 6-h precipitation totals: (a) the gauge observations at Eskdalemuir, and (b) the nearest-neighbour grid point Met Office
6-h lead forecasts.

bivariate extreme events (Coles, 2001). This measure of
association is simple to calculate from the number of hits
and misses and has several important advantages over the
scores traditionally used to assess the skill of forecasting
rare binary events.

2. Forecast example: Eskdalemuir precipitation
totals

The concepts in this study are illustrated using an exam-
ple consisting of 6266 forecasts of 6-hourly rainfall totals
in the period 1 January 1998 to 31 December 2003
(Figure 1). The observations (Figure 1(a)) are the synop-
tic reports of 6-h totals measured by gauge at the long-
running Eskdalemuir observatory in Scotland (55°19′N,
3°12′W, 242 m elevation above mean sea-level). The pre-
cipitation forecasts (Figure 1(b)) are the direct forecast
output of the UK-mesoscale model at the nearest grid box
to Eskdalemuir accumulated over 6-h range. Although not
apparent in Figure 1, 3084 out of the 6266 observed totals
are zero at Eskdalemuir (i.e. 49% of the totals), whereas
the forecasts have fewer dry totals (2316).

The UK-mesoscale model was until September 2006
the main model guidance for short-range weather fore-
casts over the United Kingdom at the Met Office (Cullen
et al., 1997; Davies et al., 1999; Webster et al., 2003).

The model was a limited area non-hydrostatic version
of the Unified Model having a 12 km horizontal grid and
38 vertical layers and mixed-phase microphysics (Wilson
and Ballard, 1999). The mesoscale-model had its own
data assimilation cycle and it was coupled to the global
forecast model only through the lateral boundaries. (The
UK-mesoscale model has now been replaced by a larger
domain 12 km grid version covering the North Atlantic
and Europe.)

For comparison, we shall also show results for persis-
tence and random forecasts. Results for 6-h-ahead persis-
tence forecasts were obtained by calculating contingency
counts between the observed precipitation totals and those
in the preceeding 6-h period (6113 events were available).
There are fewer persistence forecasts than the original
number of observations because of missing values in the
observational record. Expected scores for random fore-
casts were also derived by recalculating new contingency
table relative frequencies as products of the marginal fre-
quencies of the original Met Office forecasts (Mason,
2003). This procedure ensures no association between the
forecasts and observations while maintaining the same
bias as in the original forecasts (Stephenson, 2000).

Figure 2(a) shows a scatter plot of the Met Office
mesoscale-model forecasts against the observations.
There appears to be some positive association but it is
difficult to observe this clearly due to skewness in the
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Figure 2. Scatter plot of (a) 6-h total precipitation forecasts versus
observations, (b) empirical probabilities of forecasts versus those of
observations. Note the strong association in the upper right hand corner

for extreme precipitation events.

rainfall totals. The skewness in the marginal distributions
can be transformed out by calculating rank-based empir-
ical probabilities qt = (rank(xt ) − 1)/(n − 1) where xt

is the rainfall total (observed or forecast) at time t and
n is the total number of rainfall values (e.g. 6266 for
the mesoscale-model forecasts). The empirical proba-
bility is an estimate of the probability Pr(X ≤ xt ) of
having a rainfall amount less than the observed value
xt and so is largest for more extreme rainfall amounts.
Figure 2(b) shows a scatter plot of the empirical prob-
abilities of the mesoscale-model forecasts versus those
of the corresponding observations. A strong association
is now remarkably apparent between the large-rainfall
values having large empirical probabilities (Figure 2(b);
top right hand corner). In other words, there is evidence
of association at extreme-rainfall amounts. The empirical

cumulative distribution functions (qt vs xt ) for the obser-
vations and mesoscale-model forecasts were found to be
very similar for this set of forecasts (not shown).

As shown in Casati et al. (2004), empirical distribution
functions can be used to non-linearly recalibrate precipi-
tation forecasts. This approach will be used here to define
binary rainfall events as those that exceed a pre-defined
probability threshold rather than a given rainfall amount.
In other words, the extremeness of rainfall events in fore-
casts and observations is defined by their corresponding
rarity as estimated by the empirical exceedance proba-
bility pt = 1 − qt . For example, rainfall totals exceeding
around 5 mm were found to have an exceedance proba-
bility of 0.1 (the solid black lines in Figure 2(b)). This
simple recalibration approach has the virtue of eliminat-
ing frequency bias in the probability of forecasting the
event – by definition, the probability of occurrence of the
forecast event is identical to the probability of occurrence
(the base rate) of the observed event. In other words, the
threshold used to define the binary event, and the deci-
sion threshold used to determine whether to issue a binary
warning of the event are varied together in such a way
that the frequency bias stays equal to one. To aid interpre-
tation, Figures 3–5 in this article have the x-axis labelled
both with the empirical probability threshold q and the
corresponding empirical quantile of the observations.

3. The contingency table for rare events

The performance of binary-event forecasts at a specific
threshold is a summary of the 4 counts (a, b, c, d) in
the 2 × 2 contingency table that contains the number of
forecast hits, false alarms, misses, and correct rejections
(Mason, 2003). For example, for a base rate of 0.1, the
counts can be obtained by counting the number of dots
in the top right, top left, bottom right, and bottom left
quadrants, respectively shown in Figure 2.

Table I shows how the relative frequencies in such
a table can be written in terms of the base rate of
the observed event p = (a + c)/n, the hit rate H =
a/(a + c), and the frequency bias B = (a + b)/(a + c).
Note that B = 1 by definition in our example because
of the use of empirical probabilities to recalibrate the
forecasts and observations. For example, the false-alarm
rate defined as F = b/(b + d) is simply equal to F =
(B − H)p/(1 − p): the product of B − H and the odds
of the observed event.

In the limit of increasingly rare events and finite bias,
pB → 0, the cell counts a, b, c tend to zero but at
different rates. One needs to be particularly careful when
calculating the rare-event limit for various scores in order
to obtain the correct result. For example, Doswell et al.
(1990) and Marzban (1998) have both noted that there
is potentially ambiguity in how to take the rare-event
limit of certain scores so as to avoid singularities. To
avoid such ambiguities, it is necessary to make clear
assumptions about how the hit rate H and the bias B

change as a function of base rate as the base rate p → 0.
Here, we will make the following assumptions:
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1. The hit rate tends to zero as H ∼ κp1/η−1 where
0 < η < 1 and 0 ≤ κ ≤ 1

2. The frequency bias tends to a constant B ∼ β where
0 < β < ∞

with the parameters β and κ constrained so that all four
relative frequencies in the contingency table lie in the
interval (0,1).

The exponent η is a key parameter in determining
how fast the hit rate converges to zero for rarer events,
yet it is unimportant for the false-alarm rate, F = (B −
H)p/(1 − p), which behaves as βp in the limit p → 0
when η < 1. Hence, under these assumptions, the locus of
points (F, H) ∼ (βp, κp1/η−1) → (0, 0) as p → 0 when
η < 1. Such behaviour is typically observed to occur
for operational forecasting systems. The behaviour is
analogous to the regularity property observed to occur for
receiver-operating characteristic (ROC) curves (Swets,
1986; Mason, 2003). However, it should be noted that the
locus of points (F, H) here is not an ROC because both
the threshold defining the binary event and the forecast
threshold are being varied simultaneously whereas for

ROC curves the event threshold is held fixed. In order
to vanish as p → 0, the hit rate must have a power-law
limiting behaviour with positive exponent. The hit rate
could, in principle, tend to a non-zero constant as the base
rate tends to zero but this has never been documented to
occur for meteorological forecasting systems. However,
for the sake of mathematical completeness, we shall also
consider this special case of η = 1 where the hit rate tends
to the constant H ∼ κ as p → 0. Extreme-value theory
arguments show that such strong asymptotic dependence
can, in principle, occur and so should therefore also be
considered (Coles et al., 1999; Ferro, 2007).

The frequency bias is assumed to stay finite and
non-zero as the base rate tends to zero. It is easy to
imagine forecasting systems where this would not be
the case, for example, a system where B → ∞ because
the system forecasts too many events as the base rate
tends to zero. However, one could argue that such
forecasting systems are unrealistic and so should either
be recalibrated or redesigned so as to have a finite
non-zero frequency bias. It is reasonable to expect that
forecast users should receive warnings that have bias

Figure 3. (a) Hit rate for different thresholds, (b) false-alarm rate for different thresholds, (c) hit rate versus false-alarm rate, (d) same as (c) but
on logistic axes. Solid line denotes Met Office forecasts, dashed line denotes 6-h-lead persistence forecasts, and the dotted line denotes random

forecasts.
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Figure 4. Scores versus threshold: (a) proportion correct PC, (b) the Peirce skill score (PSS), (c) the equitable threat score (ETS), and (d) logarithm
of the OR. Solid line denotes Met Office forecasts, dashed line denotes 6-h-lead persistence forecasts, and the dotted line denotes random forecasts.

in an acceptable range that is bounded from above and
does not include zero. Although the forecasting example
in this article is recalibrated so as to be unbiased with
B = 1 for all values of base rate, we have included the
possibility of different finite non-zero β in the equations
that follow.

It is instructive to consider lower and upper bounds
for forecasting systems: random forecasts and perfect
forecasts. Random forecasts are independent of the
observed events and so have relative frequencies that are
products of the marginal frequencies, for example, a/n =
(a + b)(a + c)/n2. For such forecasts, H = Bp and
hence, the asymptotic limit of random forecasts is given
by η = 1/2 and κ = β. Perfect forecasts are identical
to the observed events and so produce no misses or
false alarms (b = c = 0) and therefore are unbiased with
B = (a + b)/(a + c) = 1. Hence, for perfect forecasts
H = 1 and F = 0 and so in the asymptotic limit are
described by η = 1, κ = 1, and β = 1. Note that perfect
forecasts provide one example of a forecasting system

where the hit rate does not tend to zero as the base rate
goes to zero.

Figure 3 shows the hit rate and false alarm-rate
behaviour as a function of threshold. The hit rates for the
Met Office and persistence forecasts decay more slowly
than the base rate with increasing threshold (Figure 3(a))
whereas the false-alarm rates tend towards the base rate
at high thresholds as to be expected for unbiased fore-
casts (Figure 3(b)). The loci of (F, H) points shown
in Figure 3(c) all converge towards the point (F, H) =
(0, 0). The Met Office (F, H) locus is above the other
loci, which suggests that the Met Office forecasts have
the best forecast discrimination. The (F, H) loci are close
to being piecewise straight lines when plotted on logistic
axes in Figure 3(d) – in other words, when H/(1 − H)

is plotted against F/(1 − F) on logarithmic axes. The
reason for this can be understood from our assumptions
which imply that in the limit p → 0 (the left hand side
of Figure 3(d)) then log H/(1 − H) ∼ log κ + (1/η −
1) log p and log F/(1 − F) ∼ log β + log p if η < 1.
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Figure 5. The extreme dependency score versus threshold for the Met Office forecasts (solid line), 6-h-lead persistence forecasts (dashed line),
and random forecasts (dotted line).

Table I. Limits of some standard scores as the base rate tends to zero: proportion correct (PC), threat score (TS)/critical success
index (CSI), equitable threat score (ETS)/Gilbert skill score (GSS), Heidke skill score (HSS), Peirce skill score (PSS), and OR.
We write δ = 1/η − 1 and denote convergence from below, above (grey shaded), and unspecified by ↑, ↓, and � respectively.
The counts ar = (a + b)(a + c)/n and dr = (c + d)(b + d)/n are those expected for random forecasts having the same marginal

counts as the original forecasts.

Score Definition Score as
f (κ, β, δ, p)

Faster rate of
decrease than

random
0 < η < 1/2

Same rate
of decrease
as random
η = 1/2

Slower rate
of decrease
than random
1 > η > 1/2

No decrease in hit rate
η = 1

PC a + d
n 1 − (1 + β − 2κpδ)p 1 − (1 + β)p ↑ 1 1 − (1 + β)p ↑ 1 1 − (1 + β)p ↑ 1 1 − (1 + β − 2κ)p ↑ 1

TS/CSI a
a + b + c

κpδ

1 + β − κpδ
κpδ

1 + β
↓ 0 κp

1 + β
↓ 0 κpδ

1 + β
↓ 0 κ

1 + β − κ

ETS/GSS a − ar
a + b + c − ar

κpδ − βp

1 + β(1 − p) − κpδ

−βp
1 + β

↑ 0 (κ − β)p
1 + β

� 0 κpδ

1 + β
↓ 0

κ − βp
1 + β(1 − p) − κ

� κ
1 + β − κ

HSS a + d − ar − dr
n − ar − dr

2(κpδ − βp)
1 + β − 2βp

−2βp
1 + β

↑ 0 2(κ − β)p
1 + β

� 0 2κpδ

1 + β
↓ 0

2(κ − βp)
1 + β − 2βp

� 2κ
1 + β

PSS ad − bc
(a + c)(b + d)

κpδ − p
1 − p

(β − κpδ) −βp ↑ 0 (κ − β)p � 0
κpδ ↓ 0

κ − p(β − κ) ↑ κ

OR ad
bc

κpδ−1(1 − p(1 + β − κpδ))

(1 − κpδ)(β − κpδ)

κpδ−1

β
↓ 0

κ(1 − p(1 + β))
β − (β + 1)κp

� κ
β

κpδ−1

β
↑ ∞ κp−1

(1 − κ)(β − κ)
↑ ∞
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Table II. Contingency table of relative frequencies expressed in terms of base rate p, hit rate H , frequency bias B, and total
number of trials n = a + b + c + d .

Observed

Event No event Total

Forecast Event a
n = pH b

n = p(B − H) a + b
n = pB

No event c
n = p(1 − H) d

n = 1 − p(1 + B − H) c + d
n = 1 − pB

Total a + c
n = p b + d

n = 1 − p 1

Therefore, the gradient of the lines in Figure 3(d) is
one way that could be used to estimate the exponent
δ = η−1 − 1. As will be shown later, there is a more
direct method for finding this exponent.

4. Limiting behaviour of standard verification
scores

Table II shows how various verification scores behave in
the limit of vanishing base rate. The limiting expressions
in columns 4–7 of Table II were obtained by first using
Table I to express the scores in terms of bias, hit rate
and base rate (leading to column 3 of Table II) and
then substituting the asymptotic expressions (F, H) ∼
(βp, κp1/η−1), and B ∼ β as p → 0.

First it is important to realize that qualitatively different
behaviour arises for many of the scores depending on the
rate at which the hit rate converges to zero as p → 0:

• Constant hit rate with no convergence to zero (η = 1),
for example, perfect forecasts;

• Slower than linear convergence (1 > η > 1/2), for
example, forecasts that have greater hit rates than
random forecasts;

• Linear convergence (η = 1/2), for example, random
forecasts;

• Faster than linear convergence (1/2 > η > 0), for
example, forecasts that have smaller hit rates than
random forecasts.

Second, it can be noted from Table II that with the
exception of the OR, all the scores tend to the trivial
limits of either 0 or 1 as p → 0 when η < 1. The scores
degenerate to trivial limits, which could give misleading
interpretations of skill at forecasting rare events. Unless
η = 1/2, the OR tends to either 0 (when η < 1/2)
or ∞ (when η > 1/2) and so is able to distinguish
between worse than random and better than random
forecasts for rarer events. Therefore, the OR skill score
(Stephenson, 2000) will also therefore tend to either 0
or 1, respectively, depending upon whether the hit rates
converge to zero faster or slower than random forecasts.

As first noted by Peirce (1884) and Gilbert (1884),
PC is not a good score to use for rare events since
it tends to unity for all forecasts (even random ones!).
Furthermore, PC only depends on base rate and bias
in the asymptotic limit when η < 1 and so ignores the

useful information contained in the hit rate. The HSS, a
skill score based on the PC, avoids these two problems
but has the disadvantage that it tends to zero for all
forecasting systems when η < 1 as does the threat score
(TS) (also known as the critical success index CSI), the
equitable threat score (ETS), and the PSS. Furthermore,
many of these scores have the non-intuitive property that
they actually converge to zero from below (i.e., they
go negative and then back up to zero) as the base rate
is decreased (e.g., HSS, ETS, and PSS when η ≤ 1/2).
Although it has been repeatedly noted that the threat
score depends on bias (e.g., Gilbert, 1884; Mason, 1989;
Schaefer, 1990), it can be noted from Table II that all
the other skill scores depend explicitly on the bias β as
p → 0 with the exception of the PSS when 1 > η > 1/2.
This means that, in principle, it is possible to modify
these scores by hedging. For example, for a fixed hit rate
and base rate, forecasting more of the rare events would
increase the frequency bias β and thereby reduce the ETS
when 1 > η > 1/2.

Several of the scores are related to each other and so
provide no new information for rare events. For example,
the HSS and the ETS are related to each other by HSS =
2ETS/(1 + ETS ) (Schaefer, 1990). By expressing both
scores in terms of the hit rate, base rate, and bias, it
is easy to demonstrate that this identity holds under all
conditions. For vanishing ETS, the relationship becomes
HSS = 2ETS when η < 1 which can be seen in the limits
given in Table II. As suggested by Schaefer (1990), ETS
also behaves like TS as p → 0, however, this identity
only holds when 1 > η > 1/2. That PSS behaves like
H, and HSS like 2(1 + T S−1)−1 as p → 0 was noted
previously by Doswell et al. (1990, Equations (1) and
(2)) but these relationships are also only valid when
1 > η > 1/2.

The PSS is identical to the HSS for unbiased forecasts
for all base rates.

The scores can also give apparently contradictory
behaviour. Note first that the OR can be viewed as a skill
score, measuring forecast accuracy relative to random
forecasts, for which OR equals 1 (Stephenson, 2000).
Now, when 1/2 < η < 1 for example, the OR increases
as events become rarer, suggesting more skill, while other
skill scores except PC decrease, suggesting less skill!
Göber et al. (2004) found such opposing behaviour while
verifying forecasts of rainfall threshold exceedances.
They disregarded scores that showed lower skill at higher
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thresholds, explaining away their behaviour as an artefact
of their formulation that forces them to decrease with the
base rate (Mason, 2003), and attributed the increasing
skill suggested by the OR to clearer precursors of heavy
rainfall events. Column 6 of Table II shows, however,
that the PSS should be expected to decrease while the OR
increases when η > 1/2. How can such contradictions
be reconciled? The explanation is two-fold. First, it is
important to realize that even scores without explicit
dependence on base rate can easily change when the
threshold used to define the event is changed. This
is because the scores also depend on the conditional
probabilities in the contingency table and these will
change as the threshold is altered. Second, scores measure
different aspects of the joint distribution and so there is
nothing, in principle, to prevent two scores from moving
in opposite directions as the forecast threshold changes.

The possibility of opposing changes in performance
measures with forecast threshold is widely recognized.
We should compute a range of scores to obtain a detailed
view of how performance changes, or focus on skill
scores such as the OR or the area under the ROC curve
(e.g. Swets, 1986) that are less sensitive to forecast
threshold. We should proceed similarly when considering
changes in event threshold: either compute several scores,
or consider those that are invariant to event threshold. For
example, one could use invariant measures of association
such as correlation or the area under the relative operating
levels curve (Mason and Graham, 1999). A simple
invariant score that is able to measure the association at
extreme levels will be presented in the following section.

Figure 4 shows the base-rate dependence of some
of the scores defined in Table II for the Met Office
forecasts, 6-h-ahead persistence forecasts, and random
forecasts for Eskdalemuir. As expected from the previous
discussion, PC (Figure 4(a)) tends to one (perfect skill!)
at high thresholds for all three forecasting procedures.
At thresholds above 10 mm, it becomes progressively
more difficult to discern differences in skill using PC.
The PSS (Figure 4(b)) can be seen to be about twice
the ETS (Figure 4(c)) in agreement with the limit results
in Table II. Although these skill scores tend to zero
at high threshold, it is still possible, yet difficult, to
discern differences in skill between the three different
forecasting systems at high thresholds. The Met Office
forecasts outperform the persistence forecasts which, in
turn, outperform the random forecasts. The difference in
skill between forecasting systems is more clearly visible
in the logarithm of the OR shown in Figure 4(d). The
OR increases for the Met Office forecasts with increasing
threshold whereas the persistence forecasts flatten out.

5. A simple non-vanishing measure of association
for extremes

The previous section has shown the importance of the
exponent η that characterizes how fast the hit rate
converges to zero for increasing precipitation thresholds.

However, none of the limits of any of the scores provide
a simple measure of η. With the exception of PC and OR,
the limit values of the scores in Table II could be used to
distinguish between η = 1 (asymptotic dependence) and
η < 1 (asymptotic independence). Only the limit value of
OR could then be used to distinguish between the three
different asymptotically independent classes: η < 1/2,
η = 1/2, and 1 > η > 1/2.

Fortunately, there is a simple score that can be used to
find η. Recent statistical work has led to the development
of an improved measure of extreme dependence for
bivariate extreme events. Coles et al. (1999) proposed
the limit of the following statistic

2 log((a + c)/n)

log(a/n)
− 1 (1)

as a measure of extremal dependence for bivariate
extremes. We will refer to this sample statistic as the EDS
and illustrate its benefits for use in forecast verification.
From Table I, EDS can be written in terms of base rate
and hit rate as follows:

2 log p

log κ + η−1 log p
− 1 (2)

Therefore, EDS tends to 2η − 1 rather than 0 in the
limit as p → 0 and does not explicitly depend on the
bias of the forecasting system. EDS provides a skill score
in the range [−1, 1] that can be used to find the hit-rate
exponent. EDS takes the value of 1 for perfect forecasts
and 0 for random forecasts, and is greater than zero for
forecasts that have hit rates that converge slower than
those of random forecasts.

Figure 5 shows the EDS calculated for different thresh-
olds for the unbiased Met Office, persistence, and random
forecasts. For random unbiased forecasts, η = 1/2 and
κ = 1 and so EDS is identically zero for all values of base
rate. EDS for the Met Office and persistence forecasts
can be seen to converge quickly (at thresholds less than
5 mm) to nearly constant values of around 0.65 and 0.35
respectively. These correspond to hit-rate exponents of
0.21 for the Met Office and 0.48 for the persistence fore-
casts – the hit rates for the Met Office forecasts decrease
more slowly than do those for the persistence forecasts as
the threshold is increased. The fast convergence and near-
constant behaviour of the EDS is of great value for its
use in the assessment of different forecast systems. Note
that unlike the other skill scores, the EDS can converge
to different constants for different forecasting systems.
It is impressive how quickly EDS converges even at
low thresholds (personal communication, Dr, M. Mitter-
maier). Approximately 95% confidence intervals on the
EDS were estimated as in Coles et al. (1999) by adding
and subtracting 1.96 times the approximate standard error
of the EDS given by

SEDS =
√

H(1 − H)

np
×

(
2 log p

H(log pH)2

)
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This is based on the delta approximation SEDS ≈
SH

d(EDS )
dH

where EDS is considered to be a non-linear
function of the hit rate for any fixed base rate (personal
communication, Dr J. Heffernan). More accurate intervals
can be estimated by fitting a bivariate extreme-value
model to the forecasts and observations (Ferro, 2007).

Association for extreme-rainfall events may at first
appear unphysical if one regards rare events as unpre-
dictable outliers. This is not the case, however, since
extreme precipitation events are often embedded in
storms that, in principle, can be predicted, whereas low-
intensity precipitation events often occur almost at ran-
dom without requiring any mesoscale features as precur-
sors. EDS has demonstrated here that there is dependency
between the Met Office forecasts and the observations for
more rare events, which is masked by the traditional skill
scores that converge to zero as the base rate vanishes.

6. Conclusions

On the basis of some simple assumptions, this study has
proposed a simple three-parameter model for how hit rate
and bias depend on base rate for vanishingly rare events.
The model has then been used to calculate how standard
scores will behave for such events. Limit behaviour
depends strongly on whether the hit rate exponent, η, is
below 1/2, equal to 1/2 (e.g. random forecasts), between
1/2 and 1, or equal to 1 (asymptotically dependent
forecasts e.g., perfect forecasts). For η < 1, with the
exception of the OR, all of the standard scores such as the
ETS degenerate to the non-informative limit of 0 (or 1
for PC) no matter how good the forecasting system may
be. Therefore, we have proposed the use of an alternative
measure, referred to as the EDS, that can be used to find
η and so can tend to different finite values for different
forecasting systems. EDS is easy to calculate from the
number of hits and misses. Unlike many of the other
scores, EDS does not explicitly depend on the bias in the
system for vanishing base rate and so is less prone to
improvement by hedging the forecasts.

In this study, we have focussed on the importance
of η as measured by EDS. For vanishing base rate,
EDS is a measure of association for bivariate extremes
(Coles et al., 1999; Coles, 2001). As pointed out by Ferro
(2007), a forecasting system with larger η will always
have a larger hit rate than a forecasting system with a
smaller η for sufficiently rare events. However, a forecast
user may be interested in either interpolating or extrap-
olating scores to different base rates in which case κ

is also necessary. Ferro (2007) showed how to estimate
the two parameters (η, κ) using a bivariate extreme-value
model and then demonstrated how these can be used
to compare the performance of various forecasting sys-
tems. Such an approach based on a rigorous probability
model has several advantages. The model can be used
to (1) interpolate smoothly between different base rates,
(2) extrapolate to even smaller base rates than have been
observed and hence make inference about skill for even

more extreme events, and (3) provide uncertainty esti-
mates on the skill measures. As demonstrated by Ferro
(2007), the model can also be used to optimally recali-
brate the forecasts and the parameters of the model can
be used to compare different forecasting systems. Such a
distribution-oriented approach has many advantages over
the simple measure-oriented approach presented in this
article.

EDS has the disadvantage that it is based only on the
numbers of hits and misses, and so ignores information
about false alarms and correct rejections. Therefore, EDS
is non-informative about forecast bias, and a forecasting
system with a good EDS could be very biased. Therefore,
one should present EDS together with the frequency bias
as a function of threshold in order to provide a complete
summary of forecast performance. This would also allow
one to check the assumption made here that the bias of
the forecasting system tends to a constant for vanishing
base rates. Ferro (2007) suggests how one might extend
the extreme-value model to be able to handle biased
forecasts. This is an important issue because sometimes
it is neither feasible nor desirable to recalibrate the
forecasts, as has been done for convenience in the
example here and in Ferro (2007). For example, tornado
warning systems are assessed on face value yet are
well known to forecast too many tornadoes compared
to how many tornadoes are actually observed. For such
uncalibrated forecasts, the mathematical approach to bias
presented here could be of use but further work is
required.

This study has shown the difficulties that can occur
in verifying even the simplest deterministic approach
for forecasting extreme events. Ideally, one should issue
probabilities for forecasts of highly uncertain rare events
(Murphy, 1991). This raises the difficult and as yet
unaddressed issue of which approaches should be used for
probability forecasts of extremes. Standard approaches
can become non-informative, for example, the Brier score
converges to a non-informative zero if one issues reliable
probability forecasts for an event with vanishing base
rate. Development of verification methods for probability
forecasts of extreme events is an important area that
clearly requires more attention.
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